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COUPLING FINITE ELEMENT AND SPECTRAL METHODS: 
FIRST RESULTS 

CHRISTINE BERNARDI, NAIMA DEBIT, AND YVON MADAY 

ABSTRACT. A Poisson equation on a rectangular domain is solved by coupling 
two methods: the domain is divided in two squares; a finite element approxi- 
mation is used on the first square and a spectral discretization is used on the 
second. Two kinds of matching conditions on the interface are presented and 
compared; in both cases, error estimates are proved. 

1. INTRODUCTION 

To approximate the solutions of partial differential equations, a number of 
methods can be successfully applied: among them, spectral-type methods, in 
which the discrete solution is a polynomial of high degree, are known to be very 
accurate when the solution to be approximated is very smooth (see [16, 8] for a 
general description of these methods). Their main drawback lies in the difficulty 
to take into account the singularities of the function to be approximated, and 
also in the difficulty in handling domains with a complicated boundary. This 
last problem is usually solved by decomposition into subdomains and/or trans- 
formation of coordinates. On the other hand, the finite element method, where 
the discrete solution, restricted to very small domains called "elements", is a 
polynomial of low degree, is well suited to problems with complex geometries, 
but its accuracy is limited by the degree of the polynomials (general properties 
of finite elements are analyzed in [11]). Several attempts have been made to 
combine the two methods into a unified framework, and thereby obtaining the 
advantages of both. The main idea on which these attempts rely consists of 
a decomposition of the domain into (rather) small subdomains so as to fit the 
geometric complexity of the boundary, and then use high-degree polynomials on 
each subdomain to approximate the solution. Two different approaches have 
been proposed: the spectral element method and the p-version of the finite 
element method. The spectral element method [25], which consists of using 
a spectral algorithm on a fixed number of subdomains, is presently developed 
for a growing number of problems (see, for instance, [15, 19, and 23]); on 
the opposite side, the so-called p-version of the finite element method, where 
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the discrete functions are polynomials of fixed high degree on each element, is 
studied by several authors ([1, 29, 32] for instance). These methods are funda- 
mentally different, first by their origin (the spectral element method is derived 
from the spectral method and the p-version from the finite element method) 
but also-and mainly-because the bases and quadrature formulas required by 
the numerical discretization of the methods are completely different. In the 
spectral element method, the subdomains have to be curved parallelepipeds; 
this leads to the use of tensorial bases, so that consistent quadrature rules can 
be employed to compute the different integrals of the problem. This is not in 
general the case for the p-version, and the resulting numerical problems are 
completely different, even in the number of operations required (in two dimen- 
sions, for instance, and for n degrees of freedom, the number of operations for 
solving a second-order partial differential equation is &(n312) per subdomain in 
the spectral element context, and &(n 2) per subdomain in the p-version). The 
two methods present the same asymptotic behavior but the operations count 
for the resolution of the resulting discrete equations is different. 

The idea of this paper is very different: as previously presented by K. Z. 
Korczak and A. T. Patera [19], it consists of dividing the domain where the 
problem must be solved in two parts; then, the problem will be approximated by 
a finite element method on the first part and by a spectral method on the second. 
Consequently, the discrete space will consist of functions which are piecewise 
polynomial on one part and the restriction of a high-degree polynomial on the 
other, and which satisfy a matching condition on the interface. Here, we present 
and compare two kinds of matching conditions: the first kind is a pointwise one, 
i.e., we require the functions to be continuous at the nodes of the finite elements 
on the interface; the second kind is an integral one, where we require the trace of 
the finite element function on the interface to be the L -projection of the trace 
of the polynomial onto the finite element space. Of course, both algorithms will 
be nonconforming in the general case, since it is impossible to match a high- 
degree polynomial and a piecewise polynomial function on the interface in a 
continuous way. However, in a finite element context, nonconforming methods 
have proved themselves to be as efficient as conforming ones (see for instance 
[12] or [28]). Moreover, numerical experiments [14, 19] already justify interest 
in the coupling technique, which turns out to be easy to implement and very 
flexible to fit both the problem and the domain. 

In this paper, we analyze the coupling method on a test problem and in a 
model domain. The latter is simply the rectangle Q = (- 1, 1) x (O, 1), which 
is divided in two parts, QW = (-1, 0) x (O, 1) and Q+ = (O, 1) x (O, 1); we 
denote by y the interface {0} x (O, 1) and by n the unit vector orthogonal to 
y and directed from Q to Q+ (see Figure 1.1). For a given function f on 
Q, we want to approximate the following Poisson problem: Find a function u 
on Q such that 

(1.) -Au=f inQ, u=0 onOQ. 

An outline of the paper is as follows. In ?2 we introduce the discrete spaces 
and state the discrete problems. Sections 3 and 4 are devoted respectively to 
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n 

FIGURE 1. 1. Decomposition of the domain. 

the analysis of the consistency error and of the approximation error. The final 
error estimates, together with concluding remarks, are given in ?5. 

The main results of this paper were first presented in [5]. 

Notation. Let A denote any open interval of the real line or any domain in R2 
with a polygonal boundary. For any real number s, we consider the classical 
Hilbert Sobolev spaces Hs (A) , provided with the usual norm 11 IIs A' and also, 
when s is an integer, with the seminorm 1 Is A. For any real number s > 0 
and any p, 1 < p < oo0, p $4 2, we also use the Sobolev spaces Ws P(A), 
which are no longer Hilbert spaces, provided with the norm I Ils I, A* Finally, 
for any real number s > 0, Ho (A) stands for the closure in Hs (A) of the space 
of infinitely differentiable functions with compact support in A. 

Throughout this paper, with any function v defined on Q, we associate the 
pair v* = (v , v+), where v (resp. v+) denotes the restriction of v to Q 
(resp. Q+). The scalar product on L 2(Q) x L 2(Q+), 

(1.2) (u*, v*)= u (x)v-(x) dxf + (x)v+(x) dx, 

coincides with the usual one on L 2(Q). We also provide the product H1 (QW) x 
HI (Q+) with the norm 

(1.3) IIV*II = [(v* v*) + (Vv* ,Vv*)] /; 

the space of pairs v* in H (Q) x H1 (Q+) with v continuous through y is 
isomorphic to H1 (Q) . Finally, we define on H1 (Q) x H1 (Q+) the bilinear 
form 

(1.4) a(u*, v*) = (Vu*, Vv*) V(u*, v*) E [H1(Q) x H1 (Q+)]2. 
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Clearly, for any function f in L 2(Q), problem (1.1) is equivalent to the fol- 
lowing one: Find u in Ho (Q) such that 

(1.5) a(u*, v *) = (f *v* ) Vv E Hol(Q) 

This variational form is precisely the one which will be used in order to define 
the discrete problems. 

In all that follows, c, c', c", ... are generic positive constants independent 
of the discretization parameters. 

2. THE DISCRETE SPACES AND PROBLEMS 

2.1. Definition of the discrete spaces. We have to define a discrete space on 
each subdomain Q_ and Q+, and then we must make precise the matching 
conditions on the interface. 

Let h be a real parameter, 0 < h < 1, which will tend to 0. With each 
value of h, we associate a triangulation h of the domain Q-, i.e., a finite 
set of triangles such that the intersection of two triangles is either empty, or a 
vertex, or an edge, and such that (cf. Figure 2.1) 

(2.1) = U K; 

h is the upper bound of the diameters of the triangles of h . We denote by hK 
the diameter of any triangle K in Sh, and by PK the diameter of the inscribed 
circle in K. Next, we assume that the family (-Th)h is regular in the following 
sense (cf. [11, ?3.1] or [3, Definition 3.1]): there exists a constant T > 0 such 
that, for any h and for any K in h, the following inequality holds: 

(2.2) PK _ ThK. 

Let k be a fixed integer > 1 . For any closed subset A of 11R (resp. 21), we 
denote by Pk (A) the set of the restrictions to A of polynomials of one variable 
(resp. two variables) with total degree < k. With any triangulation , we 
have the associated finite-dimensional space Xh defined by 

(2.3) Xh={VhE 
' (Q );VKE?/1, VhIK EPk(K)andVh=OonaQ \y}. 

We also need the finite-dimensional trace space 

(2.4) Xh = {Vhly, Vh E Xh}. 

In order to build an appropriate basis of Xh and Xh, we consider each triangle 
K as the support of a Lagrange finite element (K, Pk(K), 5K), where EK is the 
set of all points in K with barycentric coordinates i/k, j/k, and (k - i- j)/k, 
0 < i, j < k, i + j < k; it is well known [11, Theorem 2.2.1] that this set of 
points is Pk(K)-unisolvent. Next, we set 

(2.5) - h U -K' 
K - 

and also 

(2.6) laE.nyj 
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With each point a in Eh n (W- u Y), we associate the unique function qa of 
Xh which is equal to 1 in a and vanishes at any other point of -h* . Then the 
set {qa, a E..- n( u Y)} is a basis of the space Xh and the set {Daly, a E 'h} 

is a basis of the space xh. 
Next, let N be an integer > 1, which will tend to ?oo. For any integer 

n > 0 we denote by Qn (Q+) the set of the restrictions to Q+ of polynomials 
of two variables with degree < n with respect to each variable. For each integer 
N, we consider the finite-dimensional space XN defined by 

(2.7) XN = {VN (E QN ( ; VN = 0 on aQ \ y} 
Let (Ln)nEN be the family of Legendre polynomials on [O, 1], i.e., of orthog- 
onal polynomials on [O, 1] such that Ln n E N, is of degree n and satisfies 
L"(0) = 1 . We recall that the set {Lm X L n < m, n < N} is a basis of 
QN(Q) . However, we shall also characterize the polynomials of XN by point- 
wise values: let Cj, O < j < N, be the roots of the polynomial C(1 - C)LN(C) 
with 0= o < 1 <... < N = 1; we set (cf. Figure 2.1) 

(2.8) WN = (Ci, Cj) 0 < i, j < NJ 

and 

(2.9) N-N y {(o, i), < j < N- }. 

FIGURE 2.1. The triangulation and the setN 

Finally, with each value of h and N, we associate the discretization param- 
eter 3 = (h , N I). The pair u*, where u is the solution of problem (1.1), 
will be approximated in a subspace of Xh x XN consisting of all pairs which 
satisfy a matching condition on the interface y . More precisely, we are going to 
consider two kinds of matching conditions, with which we associate two kinds 
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of discrete spaces, both denoted by V1K: 
(1) pointwise matching condition: the space JP is defined by 

(2.10) x{1 (v*,vN)EXhxXN; Va E h,Vh(a)= vN(a)}; 

(2) integral matching condition: the space vj is defined by 

vj = {va = (Vh, V) eXh XN; Vqh e Xh, 

(2. 11) 

(vh -VN)(O, y)qh(y) dy = O} 

Here, we compare the two kinds of spaces; the integral matching condition will 
turn out to be better. 

Remark 2.1. We immediately note that both methods are nonconforming since 
a function van, associated with a pair v of Va, is generally discontinuous 
through y and consequently does not belong to Ho (Q) . Indeed, for N > k, 
the function va associated with the pair va = (vh, VN) in Xh x XN belongs to 
HO (Q) if and only if its restriction to y is a polynomial of Pk(y) n Ho (y); in 
the particular case k = 1, this implies that both vh and vN vanish on y. 

Remark 2.2. From a numerical point of view, to enforce the pointwise matching 
condition, one has to interpolate polynomials of XN at every point of h and 
hence must store the values L" (a), 0 < n < N, a e 4 . On the other hand, 
to enforce the integral matching condition, one needs to store the integrals 
fy Ln (Y)qa(O, y)dy, 0 < n < N. a E Q -Consequently, the costs of the two 
methods are of the same order. 

However, when k is equal to 1, for a given value of N, it is possible to 
choose the triangulation $h such that the sets 4 and ON coincide. Then, since 
the polynomials of XN are characterized by their values at the points of 
enforcing the pointwise matching condition would be less expensive. But this 
would require very strong restrictions on the triangulation 5'; in particular, 
the parameters h and N would be linked by a relation of the type h > cN1. 
Moreover, the triangulation could not be uniformly regular since it is well known 
(see [30, Theorem 6.21.3]) that the 1j, I < j < N- 1, satisfy Cj = sin 20 with 
(2j - 1)7r/4N < 6i < (j + 1)7r/2(N + 1); hence, the points of XN are not at all 
equally distributed (they cluster near + 1) . That is why we do not recommend 
such a choice. 

2.2. The discrete problems. We are now in a position to define the discrete 
problems. We recall (see [13, ?2.7 or 18, Chapter 25]) that there exist positive 
weights pj, 0 < j < N, such that the Gauss-Lobatto quadrature formula 

1 ~~N 
(2.12) f| '() dd - E (N(C)pj 

j=O 

is exact for all polynomials of degree < 2N - 1 . 
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With each point a = (CE, Cj) in - we associate the weight Pa = pip1. We 
now introduce the following discrete bilinear form on L (Q-) X w?(Q+): 

(2.13) (u*, v*) = f u (x)v(x)dx? + u+(a)v+(a) pa 
KEJ K aEoN 

which coincides with the usual scalar product on L 2(K) x QN- 1(Q+). Finally, 
we define on H1(Q-) x 1(Q+) the bilinear form 

2~~~~~~~~~~~~~~ (2.14) a5(u*, v*) = (Vu*, Vv*)5 V(u*, v*) E[H1 (K2) X 1 (f+)]2 

Then, for any pair f* given in L 2(Q) x F' (Q+), for each kind of matching 
condition, the discrete problem is the following: Find ua, with ua in Va, such 
that 

(2.15) a(uav) =(f*,v) Vv ECZ V. 

Remark 2.3. Of course, in definition (2.13), one could, by using a quadrature 
formula, replace each integral fK u (x)v - (x) dx by its approximation. The 
resulting algorithm will be thoroughly analyzed in [14]. 

We recall [9, Lemma 3.2] the property 

(2.16) ZLN(4j)p =(2 + N ) f LN(4) dc. 
j=O 

Since the quadrature formula (2.12) is exact for all polynomials of degree < 
2N - 1 , the discrete scalar product (., .), is uniformly equivalent to (, .) on 
L 2(K) x QN(Q+) . Consequently, the form a6 satisfies the following properties 
of continuity: 

(2.17) ja,5(u*j *5vI *) E [H1(+-) 
- + 2 

and of ellipticity: 

(2.18) a6(u*, u*) > (Vu*, Vu*) Vu* e H1(Q) x QN( +). 

Now, since both aOK n aQ and aQ+ n aQ have a positive measure, it follows 
from the Poincar6-Friedrichs inequality that the seminorm v* (Vv*, Vv *) 1/2 

is a norm equivalent to 11 11 on the space 

{v E H1(Q-) x H'(Q+); v = 0 on AOQ} 

which yields in our particular case 

(2.19) a(u* ,U*)>cIlu*ll2 Vu* EH (Q )xQN(Q ). 
Thus we have proved the following result. 

Proposition 2.4. For pointwise as well as integral matching conditions, problem 
(2.15) has a unique solution ua with ui in Jat. 

The purpose of what follows is to give an estimate for the error between the 
solutions u and ups of problems (1.1) and (2.15), respectively. We begin with 
a classical bound (see [11, Theorem 4.2.2]). 
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Proposition 2.5. For pointwise as well as integral matching conditions, the solu- 
tions u and ua of problems (1.1) and (2.15) satisfy 

I u* - uI11 < c { inf {Ilu - v,1 1 + sup [a(v, , wv4) - a (v, , wz )]/I wa11I} 

+ sup [(f*, w) - (f*, w*)45/Ilw* II 
(2.20) + & 

( 5 ( 

+ sup (aulan)(0, Y)(WNh- 0)(?Y)dy/llw,5}, 
W*=(W ,W)Z Y 

Proof. Let v* be any element in V? . Using (2.19), we have 

clu- V112 < a(u - v, ua - v ) 

=-a(v',' ua - v + a(v*, ua -v 

-, a(V6, u15 - v5) + (f* u 
1 -1 v) . 

Next, it follows from (1.1) that, for any w* in H1(Q) x H'(Q+) such that 
w vanishes on AQ, 

(f*, w*) = f f(x)w(x) dx = - f (Au)(x)w-(x) dx - fQ(Au)(x)w+(x) dx 

=a(u*, w*)+ f(u/On)(0,y)(w+-w )(0,y)dy. 

Setting w = u? - = (wh, WN) and combining this result with the previous 
inequality, we obtain 

CgllU - V *12 < a(u* v, a-v) + a,(v*, u* - v*) - a,(v*, u* - v*) (f - v) + (f*, u -v )5 

+ j(au/On)(0, y)(wN - Wh)(0, y) dy, 

and (2.20) follows. o 

We are now interested in deriving a bound for 
(1) the consistency error term 

sup j(au/On)(0, y)(wN - Wh)(0, y) dy/llw* 11, 
Wa &=(W h WN) EV& 

(2) the approximation error term 

VE eV& 
1 11 

since estimating the other terms in (2.20) is standard in spectral methods. 

3. ANALYSIS OF THE CONSISTENCY ERROR 

The aim of this section is to study the term 

f(au/On)(0, y)(wN - Wh)(0, y) dy, 
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for any pair wa = (wh, WN) in VJn, where u is a given function on Q which 
we shall assume to be sufficiently smooth. The analysis involves only one- 
dimensional approximation operators. 

3.1. Pointwise matching. We recall that there exists an interpolation operator 
1h from {v Ez WO(y); v(O) = v(1) = 0} into Xh such that, for any function 
v continuous on y and vanishing at 0 and 1, L hv is the only element of xh 
which satisfies 

(3.1) (Lhv)(a)= v(a) VaE Xh 

Moreover, there exists a constant c such that, for any real number c, 0 < e < 
1/2, if the function v belongs to H"/2+,(y), the following interpolation error 
estimate holds [4]: 

(3.2) liv - lhV 110 y < (c/lV')h / IV I 

We are now in a position to prove the following result. 

Proposition 3.1. For any function u in H1 (Q) n H2 (Q), the following estimate 
holds for any w= (wh, WN) in VJ' 

2~~~~~/ 
(3-3) |(aulan)(0, y)(w -Wh)? y)dy < ch I /log(hN )I |u _112,0 11IW*11I 

Proof. Since u belongs to H 2(Q), the trace au/On belongs to H"/2(y), hence 
we have 

1lu0nl/2,7 
< CllU112,0- f 

Next, we estimate 

j(au/n)(O, y)(wN - Wh)(O, y)dy < IIlU/0n1jo yIIWh - WNIIOY 

< CIIU1II2 - IIWh - WNIIY. 

But, in view of the definition (2.10) of VMP, Iwh is equal to IhWN on y, so that 
by (3.2), 

f(au/an)(0, y)(wN - Wh)(, y) dy < (c'/ v')h"e lull2 Q IIWNII/2+e Y 

Applying the inverse inequality [9] gives 

(a u/a n) (0, y) (wN-Wh)(O, y) dy < (c'/lN h llUll2,Q- II WN IINl/2 Y - 

Choosing e = 1/I log(hN2)I , we obtain the desired result. o 

Remark 3.2. Of course, the estimate (3.3) is not what we want, since conver- 
gence is obtained only if the discretization parameters are linked by the follow- 
ing condition: 

(3.4) lim [h/2 I1 log(hN2)l] =0 
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(in fact, in (3.3) and in this condition, h can be replaced by h which is the 
greatest of the lengths of the edges of triangles K in 5h contained in 7). 

Remark 3.3. The estimate (3.3) is independent of k; indeed, we do not know 
how to improve it for large values of k. 

3.2. Integral matching. This case turns out to be simpler. We denote by 7h 

the orthogonal projection operator from L 2(y) onto xA. We have for any v 
in Ho(y) 

jV - 7ThVlo, y < JjV 6 |hVIo y, 

so that, for any v in Ho (y) n H(y), 1 < I < k + I, 

(3.5) liV - 7ThVllO y < ch lv111,7- 

By interpolation, this inequality also holds for any v in H (y), 1/2 < / < 1 
Finally, recalling that the interpolation space with index 1/2 between HI(y) 
and L2 (y) is Ho/2(y) (see [20, Chapter 1, Theorem 11.7]) and denoting by 

1 lll/2* , the norm of H~o2(y), we also obtain for any v in Ho(y), 

(3.6) jjV - 7hVIIO y < ch'1/2 Iv 11 /2* , . 

Now, we prove the following. 

Proposition 3.4. For any function u in Ho (i) n H2 (2) such that the function 
u - belongs to H' (K-), where I is a real number, 2 < I < k+5/2, thefollowing 
estimate holds for any w= (W, WN) in JKJ: 

(3.7) ](au/an)(0, y)(wN - Wh)(0, y) dy < ch - u 11 , u Q- 11w 11 . 

Proof. Let w* = (Wh, WN) be any element in J75; by the definition (2.1 1) of 
VI 

Wa coincides with 7AWN on y. We compute 

f(au/&n)(0, y)(wN - Wh)(0, y) dy 

= f(au/On)(0, y)(wN - 7rhWN)(0I y)dy 

= j[(au/On) -7h (au/ln)](O, ) (WN - 7rhWN) (O. ,) dy, 

so that 

f(au/an)(0, Y)(WN - Wh)(O, y)dy 

< J|(au/On) -7h h(au/n)lIoyllWN - 
7hWNIlO,y 

We not that0 u/O belogs to 1/2 1/2 We note that au/ a n belongs to Ho0 (y) n H 3/2(y) and that, since WN van- 
ishes on a + \ y , wNJ, belongs to H002 (y). Applying (3.5) or (3.6) to bound 
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the first term, and (3.6) to bound the second, we obtain 

f( au/ n) (0, y) (wN-Wh )(, y)dy < ch |'' llII3/2yIIWNI l/2* 

(with IIau/anIlI1/2,, replaced by IIau/anII112 ', in the case 1 = 2), and the 
result follows. n 

Remark 3.5. Clearly, the estimate (3.7) is much better than (3.3), since it is 
independent of N. In fact, the term f (au/an)(O, y)(wN - Wh)(O, y) dy goes 
to 0 whenever the discretization parameter h decreases to 0. 

4. ANALYSIS OF THE APPROXIMATION ERROR 

We begin by recalling some properties of the approximation by finite element 
functions and by polynomials in the two-dimensional case. 

First, since for each K in )h the set -K is Pk(K)-unisolvent, there exists 
an interpolation operator Jh from {v E F 0(0Y); v = 0 on AQ2 \ y} into Xh 

such that, for any function v continuous on Q and vanishing on AQ2 \ y. 
JYhv is the only element of Xh which satisfies 

(4.1) (>h v) (a) = v (a) Va cz- n (Q- U Y). 

Moreover, if the function v belongs to H 1(Q-) for a real number 1, 2 < 1 < 

k + 1 , the following interpolation error estimate holds [11, Theorem 3.1.5]: 

(4.2) liv -gJhVIIm Q- < ch -M 11vll1 'o-, m = 0 or 1. 

Next, we state the following result which can be derived in the same way as 
in [22, Theorem 3.2]. 

Lemma 4.1. Let p be a real number > 1 such that p - 1/2 is not an integer. 
There exists a projection operator FI' from the space {v e HP(Q.+); v = 0 on 
aQ+ \ y} onto {vN z QN(X+); VN = 0 on aQ+ \ y} such that, if a function 
v vanishing on AQ+ \ y belongs to H'(Q+) for a real number a > p, the 
following error estimate holds: 

(4.3) lv - H vIIP , V 2+ < cN'- IIv I1I Q+, 0 < ?t < p. 

We are now going to approximate a function u of HO (Q), which is suffi- 
ciently smooth, by a function v?, with v* in VJK. We set 

(4.4) V (J' = (> + q, IU) 

where qh will be chosen in Xh so that v? satisfies the matching condition 
under consideration. 

4.1. Pointwise matching. We immediately prove the following result. 

Proposition 4.2. For any function u in HO (Q) such that the pair u* belongs 
to H (Q-) x H (Q+), where 1 and a are real numbers, 2 < 1 < k + 1 and 
a > 2, there exists a pair v* in VsP such that 

(4.5) Ilu* -v11 ? c{h'' IIU 1114?- + (h' + N' )llu llQ+}. 
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Proof. For any function z defined on Q+, denote by z the function defined 
on K2 by 

Z(x, y) = z(-x, y) V(x, y) E K2- 

Next, take 2 < p < inf{k + 1, a}, p - 1/2 N, and choose van as in (4.4) 
with qh equal to -) (u - H' u+). Clearly, we have at any point a of Oh' 

(>u u)(a) + qh(a) = u (a) - iu+(a) + (fIP u+)(a) = (FIP u+)(a), 

so that vat belongs to <. Moreover, we write 

I|u -V*5II < IuI -uIhu111,Q- + lIqhII1,Q- + IIU FINUIl1 Q+ 

<I~u | -hUII111,Q- + II(id-gh)(-l -fIPNu)II1 Q- 
+ 211u+ - U HpuIQ+. 

Finally, applying (4.2) and Lemma 4.1, we deduce 

IIu* - v*I 11 < c{h'11u-11 Q- + hP-'IIi-U+ - IIP u+ lp- + N'71IIu+IIC Q+} 

? c{h 1-1u llu11- + hPl'NPaIu+ll,,+ + N1- Ilu+II Q+}. 

Applying the convexity inequality afl < as/p + f/3/q (I/p + I/q = 1, a > 0 
11 > 0) gives the proposition. o 

4.2. Integral matching. As far as the approximation error is concerned, this 
case is less simple. We are led to make an additional assumption on the family of 
triangulations: more precisely, we suppose that there exists a positive constant 
a such that, for any h and for any triangles K and K' in - such that the 
lengths of K n 7 and of K' n y are positive, the following inequality holds 

(4.6) hK < ahK'. 

That means that the family of triangulations is uniformly regular over y. The 
following result is proven in [7, Lemma 5.1]. 

Lemma 4.3. If assumption (4.6) is satisfied, there exists a lifting operator Rh 
from Xh into Xh such that the following estimate holds for any vh in Xh: 

(4.7) JJRh h , < (4 7) ||RhVh || l Q- < C 11 h 11 1/2* , y 2 

We recall that 7h stands for the orthogonal projection operator from L 2(y) 
onto xh . Our goal is to prove a stability result for this operator in the Ho/2- 
norm. 

Lemma 4.4. If assumption (4.6) is satisfied, the following stability property holds 
for any function v in Ho/(y) 

(4.8) 7rhV|L/2* y ? c IvI112* 
Proof. First, let v be any function in Ho (y) . To bound 1 7rh V L1, we write 

11 11 1 ? y < ||,hV || 1 y + |hv 7hV - 11 1, y 
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Since the family of the {K n y, K E S,} is uniformly regular, denoting by h 
the maximum of the lengths of K n y, K E 4,we can apply the standard 
inverse inequality [1 1, Theorem 3.2.6], which gives 

r J 1 ? < || hV 1L l, + ch- h|hV - ihV1|O 

< I1V11,7 + 1V - lhV|ll l+ ch' (1V- ihV O y + 11V- 7hVIoY) 

Using the estimate for the interpolation error [1 1, Theorem 3. 15] together with 
(3.5), we obtain 

(4.9) |7rhV| |v| 

Finally, by the definition of the space Ho2 (y), we interpolate this result with 
the estimate 

117rhV |lo, < Ale H, 

with index 1/2 (cf. [20, Chapter 1, Theorem 5.1]) and we obtain the desired 
result. o 

Remark 4.5. It is known that the stability result (4.8) holds if a less restrictive 
assumption than (4.6) is satisfied. However, the necessary condition for (4.7) 
to be true is not clear. 

Proposition 4.6. If assumption (4.6) is satisfied, for any function u in Ho (Q) 
such that the pair u* belongs to H 1(Q-) x H'(Q+), where 1 and a are real 
numbers, 2 < 1 < k + 1 and a > 2, there exists a pair va in J< such that 

(4.10) u* -? u |+ N1 u }u. 
Proof. We choose va as in (4.4) with p equal to 1 and q equal to 

Rh rh(LN U h 
- u) . 

Then, we have 

uh +q -7FI u = 0, 

so that v * belongs to JK. Moreover, we estimate 

15 ~ ~ + 
U -V < U - + u FOu 7h 1l QU 

< |u-1u - 1Q 1 + Rhrh (u -5u) 1)| 

+ hrh u -Nu) + u I'Nu | + 

Lemmas 4.3 and 4.4 imply 

+ 1- + + -fu 
+wa ll<lu - uC 1/2*+ 1/2* 

+ |u -I+ || + 
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Using the trace theorem, we obtain simply 

u- v < c (u - u1 u+U - ,U 1 ) 

Finally, using the estimates (4.2) and (4.3) gives the result. o 

Remark 4.7. Here also, the error is better for the integral matching condition 
than for the pointwise one. Indeed, in (4.10), the two discretization parameters 
enter in a completely independent way. 

5. FINAL ESTIMATES AND CONCLUSION 

First, we recall an estimate which follows at once from a standard result in 
spectral methods [10, Lemma 3.2; 24, (3.22)], in a slightly improved form due 
to [6, Appendix B]. 

Lemma 5.1. For any function f in L2(fQ) such that the function (y _ Y2)f- 

belongs to HI(+ )), where p is a real number > 1, the following estimate holds 
for any w=(whwN) in V=: 

(5.1) (fV w) (f*, w*) < cN -P (yy2)f+ J I pI 
Our main results are stated in the two following theorems. 

Theorem 5.2. Assume that the solution u of problem (1.1) is such that the pair 
u* belongs to H 2(Q) x H'(Q+), where a is a real number > 2. Assume 
moreover that the function f of L2 () is such that the function (y - 

2 
r 

belongs to HP(n+), where p is a real number > 1. Then, in the case of the 
pointwise matching condition, the solutions u and u,5 of problems (1.1) and 
(2.15) satisfy 

{hl/2 12- + (har1' + Nli)llu+ H, Q+ 

(5.2) 
+ N ()Pjj(y-y2)f+Ijp Q+} 

Theorem 5.3. Assume that the solution u ofproblem (1.1) is such that the pair u* 

belongs to H'(W ) x H'(n+), where I and a are real numbers, 2 < 1 < k + 1 
and a > 2. Assume moreover that assumption (4.6) is satisfied and that the 
function f of L2(f?) is such that the function (y _ y2)f+ belongs to HP(Q+), 
where p is a real number > 1. Then, in the case of the integral matching 
condition, the solutions u and us of problems (1.1) and (2.15) satisfy 

(5.3) 1ju* - u* 11< cf h1 I 1j , -+ Nl a711u+ll,,,, n+ N1 Pj(y _y2)f+jjp 2+}. 

Proof. We set a = (h, (N - 1)- I) Of course, we apply Proposition 2.5 and, 
in (2.20), we choose ve = (vh, VN) equal to the pair defined in Propositions 
4.2 and 4.6, respectively, but with a replaced by S. Since vN belongs to 

QN1 (I+) and the quadrature formula (2.12) is exact for all polynomials of 
degree < 2N - 1 , this implies that, for any w* in Vat, 

a(v,,w) =a (V, w). 



COUPLING FINITE ELEMENT AND SPECTRAL METHODS 35 

Then the estimates (5.2) and (5.3) follow from (2.20), Propositions 3.1 and 3.4, 
respectively, Propositions 4.2 and 4.6, respectively, and Lemma 5.1. 5 

By a classical duality method, it is possible to derive an improved estimate 
for IIu - u,, I I in the case of the integral matching condition. 

Proposition 5.4. Under the assumptions of Theorem 5.3, in the case of the integral 
matching condition, the solutions u and u, of problems (1.1) and (2.15) satisfy 

)IIu - U3 |l0 Q < c{h'' (h + N')Ilu IIIz,,- + Nl'(h + N')Ilul+I In Q+ 

+N 'IIvY-Y )f IIAQ+} 

Proof. We have 

Iju - uIO = Q)Jsup |( - u)(x)g(x) dx/Ilgii0'Q . 
9EL 2 (Q) 

Let g be any function in L2(Q). The unique solution w in Ho (Q) of the 
problem 

(5.5) -Aw = g in Q, w = 0 on AQ, 

satisfies 

(5.6) 11W112,Q < cIIgI0IKQ 

Setting up = (uh, uN), we compute 

j(u- u)(x)g(x)dx=a(u* -us, w*)j+ (w/On)(O, Y)(uN uh)(0, Y)dy. 
Q~ ~ ~~~~~~1 Y)(N U)( 

Hence, for any was in Va, with 3 = (h, (N- 1) ,we have 

f(u - u,)(x)g(x) dx =a(u* - u*4, w* - we) + (f*, w) (f*, w) 

+ f(aw/On)(O, y)(uN - Uh)(O, y) dy. 

Choosing wa as defined in Proposition 4.6, and using Lemma 5.1, we obtain 

f(u - u9)(x)g(x) dx 

(5.7) < c{(h + N l)Ilu* - uII + N -P I(y - Y2)f* }11 

+ f(w/On)(O, y)(uN - Uh)(0, y) dy. 
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It remains to estimate the last term in (5.7). We note that uhty is equal to 
7rhUN Iso that 

f(aw/On)(0, y)(uN - Uh)(O, y) dy 

j[(aw/On) - 7 h(aw/an)](O, Y)(UN - irh UN)(O, y)dy 

= f[(Ouw/On)- lrh(Ow/On)](0, y)[(u- 7rhU) - (id- 7h)(u- UN)](,0 Iy)dy 

? 11(0w/On) - 7h(Ow/an)IIO ,(1Iu - 7rhUIIO y + II(id -ih)(U -UN)0,o y) 

Using (3.5) and (3.6) yields 

j(aw/On)(O, Y)(UN - Uh)(0, y) dy 

< ch1/2 Iaw/nI111/2* y(h 12Iu1 ||, - + h1 U+ - UNI1 ,Q+)' 

which, together with (5.6) and (5.7), gives (5.4). 0 

The detailed analysis we have performed allows us to compare the two algo- 
rithms, corresponding to different matching conditions. Indeed, whatever the 
regularity of the exact solution is, we obtain better convergence results in the 
case of the integral matching condition. Since we have already noted that the 
computational cost of the two methods is of the same order, we believe that this 
last algorithm has to be preferred. Numerical tests [ 14, 19] which are currently 
being implemented are expected to confirm the theoretical results. 

As already stated, in this paper we are only concerned with a model problem 
on a model domain. However, in this very simple example, it turns out that the 
order of accuracy in the finite element domain is simultaneously restricted by the 
degree of polynomials and by the regularity of the solution, while in the spectral 
domain it is only limited by the regularity of the solution. That is why we 
believe that, in more general elliptic problems (for instance the Stokes or Navier- 
Stokes equations), the finite element domain must be chosen in such a way that 
it contains a neighborhood of both the singularities of the solution and the 
singularities of the boundary of the domain (for instance, corners of polygons, 
which induce singularities of the solution even if the right-hand member is very 
smooth). Then, local refinements of the mesh can be applied to improve the 
convergence, in a much simpler way than for the p-version of finite elements. 
These techniques are presently being developed in [ 14]. It is important to note 
here that the balance between the finite element subdomain and the spectral 
element subdomain is much more easy to handle than a local refinement in 
the so-called h - p version of finite elements. The matching between the two 
domains is indeed less stringent in the present method than in the h -p version, 
where the intersection of two different domains is either a whole edge, or a 
vertex, or empty. 

We conclude this paper by giving an example of a domain with a less trivial 
boundary, and by explaining how to choose the parameters in this case. 
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Example. Let Q be a polygonal domain with vertices ai, I < i < K. For 
1 < i < K, we denote by wi the measure of the interior angle at ai and by 
di(A) the distance of any closed set A in 0 to ai. The domain Q+ is chosen 
as a large rectangle contained in Q, such that Q does not contain any vertex 
ai, 1 < i < K; then KY is defined as QK\2+ (cf. Figure 5. 1). 

FIGURE 5.1. An example of a domain with a less triv- 
ial boundary. 

In the domain Q, we solve the problem (I.1). It is known (see [17, Theorem 
5.1.3.5] or [27, Theorem 1]) that, if f belongs to Hm(Q) for a real number 
m > 0, the solution u satisfies: 

(1) The function u belongs to the space 

WpJY ) = {V: ?2 R R; f (OJ+kv/Ox]ayk)2p(x) dx < +oo, 0 j ]+k < 2}, 

where p(x) is a positive bounded weight equivalent to di(x) 2a in a neighbor- 
hood of ai, 1 < i < K, with 

{ai =O if(O < 7, 
a (i > I1- 71/W if O~i > 7t; 

moreover, one has 
1/2 

S f (a0+kv/Oxjy k)2p(x)dx 1 < CIfIOQ. 
?<j+k<2 

(2) The function u+ belongs to the space Hm+2(L+), and one has 

llulm2,Q <C lin~f d (Q ) I' )lflQ 11U1m+2j+ < 
l<i<K '1Mn 

Next, we consider a regular family of triangulations (5T)h of Q- such that, 
for any 1i > 7r, 1 < i < K, the diameter of each triangle containing the vertex 
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ai is bounded by ch1l(/(1 ) and the diameter of each triangle K contained in a 
fixed neighborhood of ai is bounded by ch di(K); a way of constructing such a 
triangulation was first described in [27]. The finite element functions are chosen 
to be piecewise linear continuous functions (i.e., k is equal to 1). Using [27, 
Theorem 2] together with Theorem 5.3, we see that the discrete solution up of 
problem (2.15) satisfies the error estimate 

IIu* - u*I < c(f) {h + Nm ( inf d/wol m1) + Nm}. 

Of course, in a practical computation, the parameters will be chosen so as to 
make the three error terms h, N m- 

(inf1<i<KdT@w m 1), and N m of the 
same order. For instance, assume that m is equal to 3, that the di are equal to 
2.10 lO , and that the constants are bounded by 10; in order to obtain a precision 
of 10- 2, we choose h equal to 10- 3 and N equal to 23 - (103/4) - (57/8), 

which requires &( 10 6) operations in the finite element domain and &( 1.2 x 104) 

in the spectral domain; in order to obtain a precision of 10 3, we choose 
h equal to 10-4 and N equal to 41 _ 10* (57/8), which requires (108) 
operations in the finite element domain and &(7 x 10 4) in the spectral domain. 
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